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A stereological ubiquitiformal softening model for describing the softening behavior of con-
crete under quasi-static uniaxial tensile loadings is presented in this paper. In the model,
both the damage evaluation process of fracture cross-sections and their distribution along
the specimens axis are taken into account. The numerical results of a certain kind of full
grade concrete made of crushed coarse aggregate are found to be in good agreement with
the experimental data. Moreover, an experiental relation between the lower bound to the
scale invariance of concrete and its tensile strength is also obtained by data fitting of the
experimental data, which provides an effective approach to determine the lower bound to
scale invariance of concrete.
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1. Introduction

Fractals have been widely used as a nonlinear mathematical tool to describe mechanical beha-
vior of heterogeneous materials such as concrete since the pioneer work of Mandelbrot (1982),
Mandelbrot et al. (1984). It has been found that the internal structure of concrete appears quite
a well approximate self-similarity in many aspects over certain ranges of scale. For example,
it has been verified experimentally that the fracture surface of concrete can be described by
fractals (Saouma and Barton, 1994; Charkaluk et al., 1998). Stroeven has shown that for almost
all the aggregate grading in concrete, the distribution of the aggregate particles in various dia-
meters appears the self-similarity feature (Stroeven, 1973, 2000). Moreover, fractals have also
been widely used to describe the fracture behavior of concrete (Borodich, 1997; Carpinteri et al.,
2002; Khezrzadeh and Mofid, 2006). However, there are still many intrinsic difficulties in fractal
applications, especially in the case when the measure of a real geometrical or physical object
must be taken into account because kinds of density of fractal parameters defined on the unit
fractal measure are not only lacking unambiguous physical meanings but also very difficult to be
determined in practice. Recently, Ou et al. (2014) demonstrated that such a difficulty was caused
by contradiction between the integral dimensional immeasurability of a fractal and the integral
dimensional characteristic of a real physical or geometrical object in nature, and proposed a
new concept of ubiquitiform. According to Ou et al. (2014), a ubiquitiform is defined as a finite
order self-similar (or self-affine) physical configuration constructed usually by a finite iterative
procedure. It has been shown that a ubiquitiform has a finite integral dimensional measure and
must be of integral dimension in Euclidean space, whereas the Hausdorff dimension of a fractal is
usually not integral. The Hausdorff dimension of the initial element of a fractal changes abruptly
at the point of infinite iteration, which results in divergence of the integral dimensional measure
of the fractal and makes the fractal approximation of a real geometrical or physical object to a
ubiquitiform unreasonable.
One important phenomenon in tensile failure of concrete is softening, and the most widely

used theory is the so-called cohesive crack model (Barenblatt, 1959, 1962). Over the past decades,
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several softening curves have been proposed, such as the linear curve (Hillerborg et al., 1976), the
bilinear curve (Petersson, 1981), the nonlinear curve (Reinhardt et al., 1986) and the power-law
curve (Gopalaratnam and Shah, 1985; Karihaloo, 1995). Recently, Khezrzadeh and Mofid (2006)
proposed a quasi-fractal softening curve based on fractal concepts, in which, however, only the
damage evaluation process of the fractured cross-section was considered. On the other hand,
as demonstrated by Ou et al. (2014), a ubiquitiform, rather than a fractal, should be used in
describing a real geometrical or physical object in the case of the integral dimensional measure
of the object.
Therefore, in this study, based on the concept of the ubiquitiform, a stereological ubiquiti-

formal softening model for concrete, in which both the damage evaluation process of fractured
cross-sections and their distribution along the specimens axis are taken into account, and the
calculated results of softening curves of concrete are compared with previous experimental data.
Moreover, it is interesting to find that there exists a good correspondence between the lower
bound to scale invariance and the tensile strength of concrete, and then an experiential formula
for the corresponding relationship is obtained.

2. Stereological ubiquitiformal softening model

To describe the damage evaluation process of a concrete specimen, a stereological damage region
is assumed in this paper, based on the fracture band theory (Bažant and Oh, 1983). Namely,
fracture of a heterogeneous aggregate material such as concrete can be assumed to occur in
the form of a blunt smeared crack band. Such a stereological damage region consists of a series
of fracture surfaces distributed along the axis of the specimen as a generalized ubiquitiformal
Cantor set, and each of the fracture surface will be described by a generalized ubiquitiformal
Sierpinski carpet having different complexity. The generalized ubiquitiformal Sierpinski carpet
is generated by a series of recursive procedures, i.e. an iteration process from the initial square
of unit side length. In each step of the iteration, each remaining square is divided into p2

identical smaller squares, and the generalized ubiquitiformal Sierpinski carpet is then obtained
by repeatedly removing q (q/p2 < 1) small squares from the remaining squares. According to
Khezrzadeh and Mofid (2006), the removing area represents the cracked area of the fractured
cross-sections. As has been defined by Ou et al. (2014), the complexity D of such a generalized
ubiquitiformal Sierpinski carpet is

D =
ln(p2 − q)

ln p
(2.1)

Therefore, taking different values of p and q, the generalized ubiquitiformal Sierpinski carpet
can be used to describe a surface with any complexity. The removed area in the n-th iteration is

∆an = Ap
q

p2

(p2 − q

p2

)n−1
(2.2)

where Ap is the nominal area of the generalized ubiquitiformal Sierpinski carpet. The total area
of the increased crack surface, when the specimen is failed, is

A1 =
nc
∑

n=1

∆an = Ap
[

1−
(p2 − q

p2

)nc]

= Ap
[

1−
( 1

pnc

)2−D]

(2.3)

where nc represents the critical iteration number of the generalized ubiquitiformal Sierpinski
carpet when the specimen is failed.
According to the fracture band theory (Bažant and Oh, 1983), in this study, a multiple

crack surface hypothesis is proposed in the ubiquitiformal softening model. That is to say, to
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describe the damage evolution of the concrete material, besides the main crack surface, there
are still several secondary crack surfaces, each of which is described as the above-mentioned
generalized ubiquitiformal Sierpinski carpet with different iteration orders. These crack surfaces
are assumed to be distributed along the axis of the specimen as a generalized ubiquitiformal
Cantor set (Fig. 1). Hereinafter, we denote these crack surfaces as the i-th order crack surfaces
(i = 1, 2, 3, . . . ,m), and the first order (i = 1) one is the main crack surface. According to the
structure of the generalized ubiquitiformal Cantor set, the number of the i-th order crack surface
is ki = 2

i−1. It is also assumed that the iteration number of the i-th order crack surface is one
less than that of the (i − 1)-th order crack surface. Thus, the increase of the i-th order crack
surface in the n-th iteration can be calculated by the equation

∆ain = Ap
q

p2

(p2 − q

p2

)n−i

(2.4)

The total increase of the crack surface in the n-th iteration is

∆an =
m
∑

i=1

ki∆a
i
n =

m
∑

i=1

2i−1Ap
q

p2

(p2 − q

p2

)n−i

= Ap
2mqp2m(p2 − q)n−m − q(p2 − q)n

p2n(p2 + q)
(2.5)

Fig. 1. Stereological ubiquitiformal softening model

According to the iteration law of the generalized ubiquitiformal Sierpinski carpet, the ratio
of the area of the (i+ 1)-th crack surface to that of the i-th crack surface is

Ai+1 =
p2 − q

p2
Ai (2.6)

where i = 1, 2, 3, . . . ,m, and, from Eq. (2.6), we have

Ai =
(p2 − q

p2

)i−1
A1 (2.7)

Then, the total crack surface increased in the fracture process is

A =
m
∑

i=1

kiAi = A1

m
∑

i=1

2i−1
(p2 − q

p2

)i−1
= A1

p2m − 2m(p2 − q)m

(2q − p2)p2m−2
(2.8)

For convenience, here, the homogeneous deformation along the axis of the specimen is as-
sumed, and then the elongations generated in each iteration ∆w are the same, which can be
written as

∆w =
wc
nc

(2.9)

where wc is the critical elongation of the specimen.
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In general, on the one hand, the energy consumed in each iteration is proportional to the
increase of the area of the crack surface, that is

∆Un = Gf∆an (2.10)

where Gf is the fracture energy. On the other hand, the required energy to generate new cracks
equal to the area under the softening curve in a interval of length ∆w implies that

∆Wn = Aσn∆w (2.11)

Thus, form Eqs.(2.10) and (2.11), there is

Gf
∆an
A
= σn∆w (2.12)

The relationship between the stress and the elongation in each iteration can be obtained
from Eqs. (2.5), (2.8), (2.9) and (2.12), as

σn =
Gf∆an
A∆w

=
GfApncp

2m−2(2q − p2)2mqp2m(p2 − q)n−m

A1wcp2n(p2 + q)[p2m − 2m(p2 − q)m]

−
GfApncp

2m−2(2q − p2)q(p2 − q)n

A1wcp2n(p2 + q)[p2m − 2m(p2 − q)m]
1 ¬ n ¬ nc

(2.13)

It should be noticed that the values of both the stress and the elongation in Eq. (2.13)
are discrete, starting from n = 1. In order to obtain a continuous stress-elongation curve in
the interval of [0, wc], the Khezrzadeh and Mofid modification (Khezrzadeh and Mofid, 2006)
is used, which is described briefly below. Firstly, it is assumed that the value of the softening
function in w = 0 is equal to the tensile strength of the specimen, i.e., σ(0) = ft, and that the
stress-elongation curve is linear in the interval of [0,∆w]. Next, an energy modification factor µ
is then introduced to make sure that the area under the softening curve is equal to Gf , namely,

(1− µ)Gf =
[

ft + σ
(∆w

2

)]∆w

2
(2.14)

Thus one has

σ =
µApGfncp

2m−2(2q − p2)2mqp2m(p2 − q)
nc

wc

w−m

A1wcp
2 nc
wc

w(p2 + q)[p2m − 2m(p2 − q)m]

−
µApGfncp

2m−2(2q − p2)q(p2 − q)
nc

wc

w

A1wcp
2 nc
wc

w(p2 + q)[p2m − 2m(p2 − q)m]

wc
nc
¬ w ¬ wc

(2.15)

For convenience, we assume that q = 1 in the ubiquitiformal softening model, then Eq. (2.15)
can be rewritten as

σ =
µApGfncp

2m−2(2− p2)2mp2m(p2 − 1)
nc

wc

w−m

A1wcp
2 nc
wc

w(p2 + 1)[p2m − 2m(p2 − 1)m]

−
µApGfncp

2m−2(2 − p2)(p2 − 1)
nc

wc

w

A1wcp
2 nc
wc

w(p2 + 1)[p2m − 2m(p2 − 1)m]

wc
nc
¬ w ¬ wc

(2.16)

For w = ∆w, we have

σ(∆w) =
µApGfncp

2m−4(2− p2)2mp2m(p2 − 1)1−m

A1wc(p2 + 1)[p2m − 2m(p2 − 1)m]

−
µApGfncp

2m−4(2− p2)(p2 − 1)

A1wc(p2 + 1)[p2m − 2m(p2 − 1)m]

(2.17)
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We can obtain the slope of the softening curve in the interval [0,∆w]

C =
σ(∆w) − ft
∆w

=
µApGfn

2
cp
2m−4(2− p2)2mp2m(p2 − 1)1−m

A1w2c (p
2 + 1)[p2m − 2m(p2 − 1)m]

−
µApGfn

2
cp
2m−4(2− p2)(p2 − 1)

A1w2c (p
2 + 1)[p2m − 2m(p2 − 1)m]

−
nc
wc
ft

(2.18)

Then we have

σ =
µApGfn

2
cp
2m−4(2− p2)2mp2m(p2 − 1)1−m

A1w2c (p
2 + 1)[p2m − 2m(p2 − 1)m]

w

−
µApGfn

2
cp
2m−4(2− p2)(p2 − 1)

A1w2c (p
2 + 1)[p2m − 2m(p2 − 1)m]

w −
nc
wc
ftw + ft 0 ¬ w ¬

wc
nc

(2.19)

From Eq. (2.14) and Eq. (2.19) one can obtain the energy modification factor µ as

µ = 1−
App

2m−4(2− p2)[2mp2m(p2 − 1)1−m − (p2 − 1)]

4A1(p2 + 1)[p2m − 2m(p2 − 1)m]
−
3ftwc
4Gfnc

=
4Gfnc − 3ftwc
4Gfnc

·
4A1(p

2 + 1)[p2m − 2m(p2 − 1)m]

App2m−4(2− p2)[2mp2m(p2 − 1)1−m − (p2 − 1)] + 4A1(p2 + 1)[p2m − 2m(p2 − 1)m]

(2.20)

The ubiquitiformal softening curve of concrete is then

σ=






















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1
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2
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2m−4(2− p2)[2mp2m(p2 − 1)1−m − (p2 − 1)]

A1w2c (p
2 + 1)[p2m − 2m(p2 − 1)m]

−
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f
)

w + ft 0 ¬w¬
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(2.21)

In the ubiquitiformal softening model, the iteration number is calculated by the relation

(1

p

)N

=
δmin
l

(2.22)

where δmin and l are the minimum and maximum scales of the concrete respectively, which are
related to the micro and macro structure of the concrete. However, the iteration number calcu-
lated from Eq. (2.22) is always not an integer, whereas the iteration number of the generalized
ubiquitiformal Cantor set should be an integer. Thus we assume that n = [N ] in this paper,
where the square brackets represents the maximum integer no larger than the argument.

3. Numerical results of full grade concrete

To confirm the availability of the ubiquitiformal softening model, the model is used to calculate
the softening curve of a full grade concrete specimen made of crushed coarse aggregate, and the
numerical results are compared with the experimental result (Deng et al., 2005). In the expe-
riment, the uniaxial tension-compression behavior of the full grade concrete specimens made
of crushed coarse aggregate was studied on an INSTRON8506 material testing machine under
constant-displacement loading, with the maximum load of 3000 kN. Four displacement extenso-
meters were set around the test specimen, and the data collection and the loading control were
completed by using a computer. The composition of the concrete and the experimental data are
listed in Tables 1 and 2, respectively.
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Table 1. Concrete mix of the concrete [kg/m3]

Water Cement Ash
Artificial Artificial stone [mm] Superplasticizerits
sand 5-20 20-40 40-80 80-150 JGB DH9

87 131 44 585 328 328 492 492 10.5 1.23

Table 2. Experimental data of the concrete specimen

Curing period Tensile strength Elastic modulus Critical elongation Fracture energy
[day] ft [MPa] Et [GPa] wc [mm] Gf [N/m]

110 1.908 40.0 1.390 497.220

55 1.508 37.0 1.355 448.401

46 1.310 35.0 1.199 422.878

16 1.180 31.1 1.680 445.738

15 1.044 28.9 1.289 369.463

11 0.804 22.0 1.193 273.233

In the ubiquitiformal softening model, the parameter is: p = 2.07, which is the same as in
Khezrzadeh and Mofid (2006), and the adaptive result for m is m = 2.

For a certain concrete, the parameters p,m, Ap and nc in the softening model are determined,
and the material parameters Gf , wc and ft are also known. Thus the parameter A1 and µ can
be regarded as constants. Therefore, for convenience, we rewrite Eq. (2.21) as

σ =











C1C
w
2

wc
nc
¬ w ¬ wc

ft − C3w 0 ¬ w ¬
wc
nc

(3.1)

where C1, C2 and C3 are constant. The values of these parameters for concrete specimens with
different curing periods as well as the experimental data are all listed in Table 3.

Table 3. Parameters of the ubiquitiformal softening model for concrete specimen

Curing Tensile strength Crit. elongation Iteration δmin C1 C2 C3period [day] ft [MPa] wc [mm] number nc [µm]

110 1.908 1.390 12 24 1.145 0.1008 8.894

55 1.508 1.355 11 50 1.0047 0.1156 5.9895

46 1.310 1.199 10 104 1.0188 0.1090 4.4188

16 1.180 1.680 10 104 0.7080 0.2055 3.7931

15 1.044 1.289 9 215 0.7194 0.1563 3.4388

11 0.804 1.193 8 445 0.4916 0.1682 2.8644

The comparison between the softening curves calculated by using the ubiquitiformal model
and the experimental results are shown in Fig. 2. It can be seen that the ubiquitiformal softening
model is in good agreement with the experimental data. It should be pointed out that the
difference of the stress between the softening curve in the interval [0,∆w] increases with the
tensile strength of the specimen, except for the specimen with a curing period of 16 days.
However, it can also be seen that the experimental data for this specimen, especially the critical
elongation, is abnormal. The difference of the softening curve of this specimen is caused mainly
by abnormality of the experimental data.

As has been mentioned by Ou et al. (2014), the lower bound to the scale invariance δmin,
namely, the minimum scale of concrete, is a crucial parameter for a ubiquitiform, and it can be
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Fig. 2. The ubiquitiformal softening curve: (a) specimen of 1.908MPa, (b) specimen of 1.508MPa,
(c) specimen of 1.310MPa, (d) specimen of 1.180MPa, (e) specimen of 1.044MPa, (f) specimen

of 0.804MPa

seen that this crucial parameter is related with the tensile strength of the concrete specimen
with different curing periods. The lower bound to the scale invariance δmin for the specimen
with different tensile strength is shown in Fig. 3. By fitting the data with a power function, the
relation between the lower bound to the scale invariance δmin and the tensile strength can be
obtained as

δmin = 221.28 · f
−3.24
t (3.2)

where the units of δmin and ft are µm and MPa, respectively. This relationship provides a reaso-
nable approach to determine the lower bound to the scale invariance of concrete. Furthermore,
by analysing the influencing factors of the concrete tensile strength, the approach to determi-
ne the lower bound to the scale invariance of concrete by other physical parameters may be
obtained.
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Fig. 3. The relation between the lower bound to the scale invariance δmin and tensile strength
of concrete

It should be mentioned that, although such an ubiquitiformal softening model for concrete
seems to be similar to the fractal one (Khezrzadeh and Mofid, 2006), it has more definite physical
meanings. The relation between the lower bound to the scale invariance and tensile strength of
concrete is obtained numerically, which may provide a reasonable approach to determine the
lower bound to the scale invariance of concrete.

4. Conclusion

A stereological type of ubiquitiformal softening model that can well describe the softening beha-
vior of concrete under quasi-static tensile loadings is proposed in this paper. Both the damage
evaluation process of fracture cross-sections and their distribution along the specimens axis are
considered. Moreover, by fitting the experimental data, a relation between the lower bound to
the scale invariance and the tensile strength of concrete is obtained, which provides a reasonable
approach to determine the lower bound to the scale invariance of concrete.
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